Self-assembly of Compact Molecules Possessing Two Carboxy and One Amide Groups into Tubular Nanostructures in Liquid Crystal Phases

Keiki Kishikawa,*¹ Miyuki Isaka,¹ Masahiro Takahashi,¹ Kazuya Saito,² and Shigeo Kohmoto¹ ¹Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 2 Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba,

Tsukuba, Ibaraki 305-8571

(Received August 15, 2011; CL-110680; E-mail: kishikawa@faculty.chiba-u.jp)

Compact molecules $1-3$ possessing two carboxy and one amide groups were synthesized, and their self-organization into tubular nanostructures in liquid crystal phases was studied. The tubular structures were confirmed by polarized optical microscopy (POM), differential scanning calorimetry (DSC), and one- and two-dimensional X-ray diffractions (1D- and 2D-XRDs).

Tubular nanostructures are biologically important as basic structures of channels and receptors, while they are also important in chemical fields to realize reversible encapsulation or stochastic sensing.¹ To construct tubular nanostructures artificially, selfassembly of low-molecular-weight molecules using intermolecular hydrogen bonds is a highly effective methodology. Those tubular superstructures reported are categorized into two types, coiled supramolecular polymers² and columnar molecular aggregates composed of cyclic supramolecular oligomers (tetramers³ and hexamers⁴). However, the construction is still difficult and only a few examples are known. It is especially difficult to synthesize a tubular structure with a large inside diameter $(>12 \text{ Å})$. In this paper we describe a methodology for construction of a tubular superstructure with a large inside diameter by assembling simple and compact molecules.

We designed molecules $1-3$ (Scheme 1) consisting of five components; 1) two carboxy groups with an angle of 120°, 2) one benzene ring for π stacking, 3) one amide group, and 4) alkyl chains. We expected self-assembly of the molecules into cyclic hexamers (A) by using intermolecular hydrogen bonding between the carboxy groups, stacking of the hexamers into a tubular structures (B) by $\pi-\pi$ interactions and linear intermolecular hydrogen-bonding network of the amides, and generation of tubular structures in a columnar liquid-crystal phase. The internal diameter of the tubular structure is estimated to be about 14 Å by an analogy between the holes of this hexamer and the trimesic acid network in crystal. 5

The phase behaviors were investigated by POM and DSC, and the results are shown in Table 1. Compounds 1 and 2 exhibited a

Scheme 1. Molecular structures 1–3 and concept for generation of the tubular superstructures.

hexagonal columnar (Col_h) liquid-crystal phase, and 1 decomposed before the transition from the Col_h to isotropic liquid phase on heating. These compounds did not show the typical textures of Col^h phases because of their high viscosities (Figure 1). Compound 3 showed Col_h and cubic (Cub) phases. Though the textures were not typical for these phases, in the transition from the Col_h to Cub phase the texture became dark on heating because Cub phases are optically isotropic (Figures 2a and 2b).

Figure 3 shows the XRD profiles of 1 and 2. Compound 1 has $d(100)$, $d(110)$, and $d(200)$ peaks at 37.3, 21.8, and 18.8 Å, respectively. Compound 2 has $d(100)$, $d(110)$, $d(200)$, and $d(210)$ peaks at 40.9, 23.7, 20.5, and 15.6 Å, respectively. The column diameters *a* of 1 and 2 are 43.1 ($Z = 5.3$) and 47.2 Å ($Z = 6.1$), respectively.⁶ In these profiles, the intensity of each $d(110)$ peak is larger than that of the $d(200)$ peak. This feature is quite different

Table 1. Phase behaviors of 1, 2, and 3

	Compound Phase behavior ^a
	Cr 220 (1.7) Col _h 300 (-) dec.
2	Cr 150 (0.2) Col _h 245 (6.3) Iso
3	Cr1 43 (9.9) Cr2 196 (2.8) Col _h 240 (--) Cub 259 (11.2) Iso

^aThe transition temperatures ($\rm ^{\circ}C$) and transition enthalpies (kcal mol⁻¹) were determined by DSC (5° C min⁻¹) on heating and are given in the parentheses. Cr, Cr1, and Cr2 indicate crystal phases, and Col_h, Cub, and Iso indicate hexagonal columnar, cubic, and isotropic liquid phases, respectively.

Figure 1. Polarized microphotographs of (a) 1 at $280\,^{\circ}\text{C}$ (Col_h phase) on heating (\times 200) and (b) 2 at 220 °C (Col_h phase) on heating (\times 200).

Figure 2. Polarized microphotographs of 3 (a) at 220 °C (Col_h phase) on heating (\times 200) and (b) at 245 °C (Cub phase) on heating (\times 200).

Figure 3. XRD profiles of (a) 1 and (b) 2 at 230 and 220 °C (Col_h) phases) on heating, respectively.

Figure 4. XRD profile of 3 at (a) 220 (Col_h phase) and (b) 240 °C (Cub phase) on heating.

from those in general Col_h phases. Usually, intensity of $d(200)$ peak is larger than that of $d(110)$ peak. Percec et al. explained that the large intensity of $d(110)$ in Col_h phases originated in the tubular structure of each column.^{1,7} We also simulated the peak intensities of $d(100)$, $d(110)$, and $d(200)$ and could confirm that this intensity balance was obtained when the central part of each column has a low electronic density area. It is difficult to know the reason why the maximum of the halo of 1 in Figure 3a is not located at around $2\theta = 20^{\circ}$ (ca. 4.5 Å). One of the reasons is that the intensity of the halo of the alkyl chains is much weaker than that of the disordered columnar packing.

In the Col $_{h}$ phase of 3 (Figure 4a), the XRD profile shows $d(100) = 41.8 \text{ Å}, d(110) = 24.3 \text{ Å}, \text{ and } d(200) = 20.9 \text{ Å} \text{ in the}$ small-angle region. From the intensity ratio $(d(110) < d(200))$, the column may not have the large low-density space at its center. The column diameter a is 51.5 Å $(Z = 5.6)$.⁶ In the Cub phase of 3 (Figure 4b), the XRD profile showed $d(200)$, $d(210)$, $d(211)$, $d(220)$, $d(222)$, and $d(400)$ peaks at 44.6, 39.8, 36.2, 32.7, 25.0, and 21.8 Å, and the Cub phase was classified as $Pm3n$ with the lattice parameter $a = 89.0 \text{ Å}$. Further, it is obtained that the diameter of the spherical micelle is 55.2 Å (the average number of molecules per micelle: $\mu = 63.3$ and that each micelle consists of about 10 hexamers. It is rare for disc-shaped molecules to exhibit a cubic phase.³

To investigate the superstructure of 2 which gave the Col_h phase with a wide temperature range and the typical XRD profile for a tubular structure, 2D-XRD was performed.⁸ The sample in the Col_h phase was sheared at 220° C and cooled to room temperature quickly to give the supercooled Col_h phase. The 2D-XRD profile of the supercooled sample was obtained by using an imaging plate. The $d(100)$, $d(110)$, and $d(200)$ peaks are observed on the meridian (Figures 5a and 5b). Figure 5c shows two lines corresponding to the $\pi-\pi$ stacking distances. These observations strongly suggest the following self-assembly (Figure 6). The molecules generate cyclic hexamers using intermolecular hydrogen bonds of the carboxy groups, and then the hexamers stack using $\pi-\pi$ interaction and intermolecular hydrogen bonds of the amide groups. The two aromatic stacking distances $d = 3.4 \text{ Å}$) and

Figure 5. (a) 2D-XRD profile of 2 in the Col_h phase supercooled $(25^{\circ}$ C) and (b) (c) its magnified figures of the central and outer parts. The sheared direction is indicated by a white arrow.

Figure 6. Schematic representation of the tubular structure. The repeat distances of aromatic rings $(d \text{ and } d')$ are indicated.

 d' (=3.3 Å) shown in Figure 5c originate in the stacking of the cyclic hexamers and the peripheral phenyl groups and are indicated with arrows in Figure 6C, respectively. The Z value $(=6.1)$ of compound 2 is fully consistent with that the one-disk unit consists of the six molecules. Even though the Z values of 1 and 3 (5.3 and 5.6) are 12% and 6.6% smaller than the ideal Z value $(=6.0)$, it is reasonable to consider that these values are close to the ideal one because of the fluidity of these materials.

We demonstrated that the small molecules consisting of five components self-assemble effectively into a tubular superstructure in a liquid crystal phase.

References and Notes

- 1 V. Percec, A. E. Dulcey, V. S. K. Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, S. Nummelin, U. Edlund, S. D. Hudson, P. A. Heiney, H. Duan, S. N. Magonov, S. A. Vinogradov, [Nature](http://dx.doi.org/10.1038/nature02770) 2004, 430, 764.
- 2 a) M. S. Kaucher, M. Peterca, A. E. Dulcey, A. J. Kim, S. A. Vinogradov, D. A. Hammer, P. A. Heiney, V. Percec, [J. Am. Chem.](http://dx.doi.org/10.1021/ja076066c) Soc. 2007, 129[, 11698](http://dx.doi.org/10.1021/ja076066c). b) S. Stončius, E. Orentas, E. Butkus, L. Öhrström, O. F. Wendt, K. Wärnmark, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja061160z) 2006, 128, [8272](http://dx.doi.org/10.1021/ja061160z). c) G. Dan Pantoş, P. Pengo, J. K. M. Sanders, [Angew. Chem., Int.](http://dx.doi.org/10.1002/anie.200603348) Ed. 2007, 46[, 194](http://dx.doi.org/10.1002/anie.200603348). d) S. Hanessian, V. Vinci, K. Fettis, T. Maris, M. T. P. Viet, [J. Org. Chem.](http://dx.doi.org/10.1021/jo701621c) 2008, 73, 1181.
- 3 T. Kato, T. Matsuoka, M. Nishii, Y. Kamikawa, K. Kanie, T. Nishimura, E. Yashima, S. Ujiie, [Angew. Chem., Int. Ed.](http://dx.doi.org/10.1002/anie.200353231) 2004, 43, [1969](http://dx.doi.org/10.1002/anie.200353231).
- 4 a) H. Fenniri, P. Mathivanan, K. L. Vidale, D. M. Sherman, K. Hallenga, K. V. Wood, J. G. Stowell, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja005886l) 2001, 123, [3854](http://dx.doi.org/10.1021/ja005886l). b) H. Fenniri, B.-L. Deng, A. E. Ribbe, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja026164s) 2002, 124[, 11064](http://dx.doi.org/10.1021/ja026164s). c) C. Pérez, C. G. Espínola, C. Foces-Foces, P. Núñez-Coello, H. Carrasco, J. D. Martín, [Org. Lett.](http://dx.doi.org/10.1021/ol005534j) 2000, 2, 1185. d) H. Carrasco, C. Foces-Foces, C. Pérez, M. L. Rodríguez, J. D. Martín, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja011028t) 2001, 123, 11970. e) G. Borzsonyi, R. L. Beingessner, T. Yamazaki, J.-Y. Cho, A. J. Myles, M. Malac, R. Egerton, M. Kawasaki, K. Ishizuka, A. Kovalenko, H. Fenniri, [J. Am.](http://dx.doi.org/10.1021/ja105028w) [Chem. Soc.](http://dx.doi.org/10.1021/ja105028w) 2010, 132, 15136. f) R. S. Johnson, T. Yamazaki, A. Kovalenko, H. Fenniri, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja0706192) 2007, 129, 5735.
- 5 A. Dmitriev, N. Lin, J. Weckesser, J. V. Barth, K. Kern, [J. Phys. Chem.](http://dx.doi.org/10.1021/jp014214u) B 2002, 106[, 6907.](http://dx.doi.org/10.1021/jp014214u)
- 6 The Z value was calculated based on $\rho = 1.0 \text{ g cm}^{-3}$ and $c = 3.4 \text{ Å}$.
- 7 V. Percec, A. E. Dulcey, M. Peterca, P. Adelman, R. Samant, V. S. K. Balagurusamy, P. A. Heiney, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja071088k) 2007, 129, 5992.
- 8 Supporting Information is also available electronically on the CSJ-Journal Web site, [http://www.csj.jp/journa](http://www.csj.jp/journals/chem-lett/index.html)ls/chem-lett/index.html.